
Lesson Plan 16 - Differential Equations 7.9 

 

Differential Equations 

 

What is a Differential equation. 

 

It is an equation that includes an unknown function and one more of its derivatives. 

 

An example might be: 

 

( ) ( )'f x Cf x=  

We will typically write this as 'y Cy=  or 
dy

y C
dx

=  

 

Often the solution of a differential equation will be a family of solutions.    

If the problem to be solved has some initial conditions, this may narrow the solution 

down to a single function. 

 

Because the function xe  has the unusual property that x xd
e e

dx
=  it plays an important 

role in solving differential equations that we will see as we go forward. 

 



We start by looking at a specific example using the growth of a population.  This could 

be a population of people, animals or bacterial.   We assume that the rate of  increase in a 

population is related to the size of the population.   We write this as follows: 

 

dP
kP

dt
=  where k is some constant. 

 

This means that the rate of change of a population is a multiple of the current population. 

 

We rewrite this as 

 

 

( )
( )

'P t
k

P t
=  and then integrate both sides. 

 

This gives us 
( )
( )

'P t
k dt dt

P t
=∫ ∫  and simplifying we find that 

( )lnkt C P t+ =  with C a contant. 

 

Since population is always positive we can drop the absolute value, and we solve 

for ( )P t  

 

( ) kt C ktP t e Ae+= =  

 

Note the role that xe  plays here. 

 

One useful property of differential equations is that while it is sometimes difficult to 

solve them, verifying them is usually quite straight forward. 

 

We check here by noting that 

 

( ) ( )' ktP t kCe kP t= =  indicating that this is a solution.    

Note that if 0C ≤ we are talking about a zero population, which is not very interesting, or 

a negative population which has no meaning at all, so assume that 0C > . 

 



This of course is not a single solution, but a family of solutions.  

 

Here are some examples for k with different values: 

 

6

4

2

5 10 15

 
To narrow this down we can use some data points.    

 

For example assume that at time time 0 the population is 0P  and at time 1 it is 1P  

 

So we can first plug in 0 giving 

( ) 0

00P Ce C P= = =  

 

Now we have 

 

( ) 0

ktP t P e=  

 

so plugging in 1 we get 

( ) 0 11 kP P e P= =  

 

and therefore 

 

0

1

ln
P

k
P

=  

 



This differential equation is very simple and will only apply for a population with an 

unlimited supply of resources that it needs to grow.  If we want to include the possibility 

that resources will run out over time we need a more complex equation, for example: 

 

The maximum population that a limited but constant supply of resources can sustain is 

called the CARRYING CAPACITY. 

 

1
dP P

kP
dt M

 = − 
 

 

 

Where M is "Carrying Capacity" .  This equation is called the LOGISTIC 

DIFFERENTIAL EQUATION, but we won't look at this anymore today. 



A second example, the motion of a Spring 

 

Many springs will obey Hook's law that F kx= − meaning the force returning the spring 

to its initial position is directly proportional to and in the opposite direction of its distance 

from its natural length. 

 

Using the physics equation F ma=  we have ma kx= − or 
k

a x
m

= − .  

Note that here we mean by x the function ( )x t  

 

Since acceleration is the 2nd derivative of position with respect to time, this leaves us 

with the differential equation: 
2

2

d x k
x

dt m
= −  

 

If you think for a minute about a function whose 2nd derivative is proportional to but the 

negative of the original function, you might come up with the sine and/or cosine. 

 

 

 

With this idea in mind we try the function 

 

( ) ( ) ( )sin cosx t A rt B rt C= + +  

 

( ) ( ) ( )' cos sinx t rA rt rB rt= −  

 

( ) ( ) ( ) ( ) ( )2 2 2 2'' sin cos sin cosx t r A rt r B rt r A rt B rt r x = − − = − + = −   

So if we set 
k

r
m

=  we have the solution ( ) sin cos
k k

x t A t B t C
m m

   
= + +      

   
 

If we have the initial condition that we stretch the spring a distance D and release it at 

t=0, making this an INITIAL VALUE PROBLEM then we have 

 

( )0x B C D= + =  

( )' 0 0 0
k

x A A
m

= = → =  

 



So we are left with  

( ) cos
k

x t B t C
m

 
= +  

 
 

 

( )' sin
k k

x t B t
m m

 
= −   

 
 

 

( )'' cos
k k k

x t B t x
m m m

 
= − = −  

 
 

and we know that the acceleration at t=0 must be 
k
D

m
− so 

( )'' 0
k k

x D B B D
m m

= − = − → =  

This gives us D C D+ =  

so C=0, giving the final equation: 

( ) cos
k

x t D t
m

 
=   

 
 



General Differential Equation 

 

The first differential equation we looked at only had a first derivative so it is a differential 

equation of the first ORDER. 

 

The second differential equation had a second derivative so it is second order. 

 

Both only have the function variable to the first degree so they are both first degree or 

LINEAR differential equations. 

 

For the physics majors in the audience, it is useful to know that most differential 

equations found in nature first or second order linear equations.  A notable exception is 

found in Einstein's theory of General Relativity or Gravity  in which you find non-linear 

equations.   



One kind of differential equation that lends itself to a direct solution is one with separable 

variables. 

if we have ( ) ( )dy
g x f y

dx
=   where g and f  only involve x and  y respectively then we 

can perform the following hand-waved approach: 

 

( )
( )1

dy g x dx
f y

=  

 

Note this is really notational.   dy and dx are not elements that can be divided up this way, 

however the usefulness of this strategy shows some of the advantages of the Leibniz 

notation over Newtonian.  

 

From here we proceed to 
( )

( )1
dy g x dx

f y
=∫ ∫  

 

Assuming we can evaluate both of these integrals, we will have an implicit solution, we 

may possibly be able to solve for y giving us an explicit solution. 

 

We can verify that this hand-wave is correct by finding the derivative of both sides. 

( )
( )1d d

dy g x dx
dx f y dx

=∫ ∫  

 

First we see that 

( ) ( )d
g x dx g x

dx
=∫  

 

Next using the chain rule we have 

 

( )
( ) ( ) ( )1 dy dy
g x g x f y

f y dx dx
= →  

 

Putting these together we have 

 

( ) ( ) ( )
1 1 1d d dy dy

dy dy
dx f y dy f y dx f y dx

 
= =  

 
∫ ∫  



Example: 

 
2 3 3

2 2 3 3 3 3

2
3

3 3

dy x y x
y dy x dx C y x C y x D

dx y
= → = → = + → = + → = +∫ ∫  

 

Given initial conditions ( )0 1y =  we have 3 1 1D D= → =  for a solution of 

3 3 1y x= +  

 

 

Example: with an implicit solution 

 
2

2 2 36
2 cos 6 sin 2

2 cos

dy x
y y dy x dx y y x C

dx y y
= → + = → + = +

+ ∫ ∫  

 

Here it is impossible to solve for y, however any function that fulfills this equation will 

be a solution to the differential equation. 

 

Example:  

 

2dy
x y

dx
=  

 
3

2 ln
3

dy x
x dx y C

y
= → = +∫ ∫  

 

We raise both sides to the power if e: 

 
3 3 3ln 3 3 3y C x x xe e e y De y De= → = → = ±  

 

Note that 0 0D y= → = is also a solution, so we have 

 
3 3xy Ae A= ∈ℝ  

 

Distribute Handout 


