
Lesson Plan 14 - Arc Length 6.4+ Avg Value 6.5 

 

1) Take attendance 

2) Return MidTerm, Questions? 

3) Arc Length 

 

Assume we have a curve described by parametric functions ( )x f t=  and 

( )y g t= defined on some interval a t b≤ ≤ . 

 

As an approximation we can break the curve up as follows: 
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Letting the 't s∆ go to zero we get the integral 
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Example 1:  

Let 2x t=  and 2y t=  be parametric equations for a curve.  What is the length of this 

curve from ( )1,1 to ( )4,8  

 

For 1x = , 1t =  and for  4x = , 2t =  so we have the integral: 
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Subtituting 24 9u t= +  we find that 18du t=  so 
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Note that if we are given a function in terms of x we can treat x as a parameter giving the 

equations x x=  and ( )y f x=  
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=  our formulae becomes 
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Example 2: 

 

Find the length of the arch of the parabola 2y x=  from  ( )0,0 to ( )1,1  
 

Here we treat y  as the parameter so we have  
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Substitute 2u y=  so that 
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From our table #21 we have 
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Try Handout Problems 



Average Value of a function. 

 

Let's say you were to take the temperature every hour on the hour for 24 hours getting 

readings 0 1 23, ,...,T T T , then the average temperature for the day would be approximately  

 
23

0

24

i

i

T

Avg =≈
∑

 

 

If you were to then increase the readings to 48, 96, etc.  You would end up with an 

integral for the average temperature that looks like this: 
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We define a more general formula for the average of a function on an interval [ ],a b as 
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Note and important feature of this.   If the function is continuous, then there must some 

x c= such that ( )f c Avg= . 

 

Simplistic reason why: 

 

Since the function is bounded there will be a maximum and minimum value of the 

function.   It should be clear that min maxAvg≤ ≤ . 

 

But because of the function is continuous, it must pass through every value of the 

function between the min and max.   So there must be a value c for which ( )f c Avg= . 

 

This is called the mean value theorem.. 

 



Example:  for ( ) 21f x x= +  on the interval [ ]1,2−  find the average value of the function 

and find a c such that ( )f c Avg=  
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Then find 21 2c+ =  

 

Note that in this case, c can be either 1 or -1 

 


