## 8.4 EXERCISES

## SKILLS AND CONCEPTS

In Exercises 1-7, answer all of the following questions for each function.

- a. What is the period, the amplitude, the frequency, and the equation of the midline?
- b. What are the maximum and minimum values of f?
- c. Graph the function without using a calculator. Make sure to graph at least one complete period.
- d. Where are the horizontal intercepts (if they exist) located?
- e. Where is the vertical intercept located?
- f. Describe the transformation of the function as related to the graph of f(θ) = sin(θ) or f(θ) = cos(θ), as appropriate.
- 1.  $f(\theta) = 4\cos(\theta)$ ;  $\theta$  is in degrees.
- f(θ) = cos(2θ); θ is in radians.

3. 
$$f(\theta) = \sin(\frac{1}{4}\theta)$$
;  $\theta$  is in degrees.

- 4.  $f(\theta) = \cos(\theta 120^\circ)$ ;  $\theta$  is in degrees.
- 5.  $f(\theta) = 3\sin\left(\theta + \frac{\pi}{3}\right)$ ;  $\theta$  is in radians.

## 38. Average Temperatures The function

$$H(m) = -18.20\cos\left(\frac{\pi}{6}(m-1)\right) + 60.46$$

models the average temperatures in degrees Fahrenheit in Huntsville, Alabama, during month m of the year. Using the function T(m) given in Exercise 37, graph H and Ttogether using a calculator. Describe the similarities and differences between the two functions.

## 39. Average Temperatures The function

$$S(m) = 9.40\cos\left(\frac{\pi}{6}(m-1)\right) + 57.8$$

models the average temperatures in degrees Fahrenheit in Sydney, Australia, during month m of the year. (Source: Modeled from data at www.engr.udayton.edu)

- Graph H (from Exercise 38) and S together using a calculator.
- Describe the similarities and differences between these two functions.
- c. Why was a positive cosine function used to model S?
- d. What accounts for the differences between the average temperatures in these locations?
- e. What is the phase shift in S? Interpret this value.
- f. Suppose we wanted to use a negative cosine function to model S instead. Fill in the blank to create a function that models the average temperatures in Sydney.

$$S(m) = -9.40\cos\left(\frac{\pi}{6}(\underline{\phantom{a}})\right) + 57.8$$