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CHAPTER 1. Introduction

This paper investigates image representation and reconstruction using frames of

translates.   One application of this study is in the reconstruction of an image from two or

more images of different foci.  Digital images are treated as vectors for which the

intensity value of each pixel is a coordinate coefficient. The two images of different foci

are treated as a projection onto a frame from the original in focus image.  The

reconstruction of the original image is made possible by finding a dual frame.   The

calculation of the dual frame would normally be numerically intractable.  Part of the main

focus of this study is about a dimension invariance property that allows the dual

calculation using a subspace.  The dimension invariance is shown under the compact

support assumption on the frame.  The reasonableness of this assumption on practical

applications is tested.
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CHAPTER 2. Frame Theory

Definition: Given a Hilbert space V, a frame is a countable set of vectors {fk}k∈I ⊆ V with

constants 0 < A ≤ B such that

2 2 2
, .k

k I

f V A f f f B f
∈

∀ ∈ ≤ ≤∑

The constants A and B are respectively known as the lower and upper frame bounds. The

spaces in this paper are all finite dimensional over the field ¸ so for a frame with m

elements, the frame inequality becomes.

22 2

1

, .
m

k

k

A f f f B f
=

≤ ≤∑ 1

For any finite set of vectors using the space defined by V = span{fk}, we can choose

2

1

m

kk
B f

=
= ∑ and the upper frame constraint will automatically be satisfied.   Similarly,

there always exists an A such that the lower constraint will be satisfied.
2

Given a frame there are three operators of importance; the analysis operator T

{ }
1

: ,  such that , ,
mm

k k
T V Tf f f

=
→ =\

 the pre-frame or synthesis operator, a linear mapping which is the adjoint of T

{ }* *

1
1

: ,  such that ,
m

mm

k k kk
k

T V T c c f
=

=

→ = ∑\
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and by composing these two operators we get the frame operator

*

1

: ,  such that , .
m

k k

k

S V V Sf T Tf f f f
=

→ = = ∑ 3

The formula 
1

 ,
m

k k

k

Sf f f f
=

= ∑  should be reminiscent of the decomposition of a vector

by an orthogonal basis, however the vectors {fk} may not be orthogonal nor linearly

independent.  From basic frame theory we know that the frame operator S is invertible

and self-adjoint and it can be used to represent any vector as

1 1

1 1

, , .
m m

k k k k

k k

f f S f f f f S f− −

= =

= =∑ ∑ 4

In general, given a frame {fk}, there are dual frames {gk} such that

1 1

, , , .
m m

k k k k

k k

f V f f g f f f g
= =

∀ ∈ = =∑ ∑ 5

The dual where gk = S
-1

fk is called the standard dual.



4

CHAPTER 3. 2D Frames of Translates in Image Representation

This paper will be dealing with frames in a finite 2D space where the frame elements are

integer rotational translates of a finite set of vectors, specifically two prototype vectors.

Frames of translates arise naturally when dealing with images and their representation.

Let the coordinates of the vector f0,0 associated with the origin be f0,0[x,y] so that the

translates of  f0,0 have coordinates

fi,j[x,y]= f0,0[x+i,y+j], i,j ∈À.

The indexes i and j of fI,j indicate the amount of offset in the x and y direction of the

vector relative to f0,0.  For computational convenience, a "rotational translate" is defined

here so that periodicity is assured, ie. for an image of height n and width m,  f [1,y] =

f [n+1,y], and f [x,1] = f [x, m+1].  Equivalently

fi,j  = 9
i,j

 f0,0.

where 9
i,j

 is a 2 dimensional rotational operator.

Taking an image f and projecting it onto a subspace defined by the two vectors f0,0 and

f '0,0, and their translates fi,j and f 'i,j, the result is a vector in a subspace which is the span

of the frame{ fi,j, f 'i,j}.  This projected vector may be written as (〈f, f0,0〉 , 〈f, f0,1〉 ,…,

〈f, fn,m〉, 〈f, f '0,0〉 , 〈f, f '0,1〉 ,…, 〈f, f 'n,m〉), which contains the coefficients of two images,

each at a different focus.
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The original image can then be reconstructed using the formula.

1 1 1 1

, , , ,

0 0 0 0

, , ' '
n m n m

i j i j i j i j

i j i j

f f f g f f g
− − − −

= = = =

= +∑∑ ∑∑

where the frame {gi,j, g' i,j} is a dual of { fi,j, f' i,j }.  Because the original vectors are all

translates, the standard dual vectors will themselves all be translates.  A proof of this

follows.  First it is shown that 9
 i,j and S commute.

Lemma 3.1: The operators 9
 i,j and S commute.

Proof: Recall that every frame {hk}k∈I has a standard dual frame {S
-1

hk}k∈I .

So for each k, g
k
0,0 = S

-1
f 

k
0,0 is the dual of f 

k
0,0.

By our definition of the frame operator,

0,0 0,0 , ,, .k k

i j i j

k i j

Sf f f f= ∑∑∑A A

Applying 9
i,j

 to both sides of this equation we find that

, ,

0,0 , ,

1 1
,

0,0 , , 0,0 , ,

1 0 0

,

, , .

p q p q k k

i j i j

k i j

q m n
k p q k k k

i j i j i j i p j q

k i j k i j

Sf f f f

f f f f f f
− −

+ +
= = =

= =

=

∑∑∑

∑∑∑ ∑∑∑

A A

A A

9 9

9

Now note that , ,
, ,  , ,p q p q

p q I f g f g∀ ∈ = 9 9  so we have

, ,

0,0 , , 0,0 , ,

,

, , , , , , 0,0

, ,

, , .

k k p q p q k k

i j i p j q i j i p j q

k i j k i j

k k k k p q

p q i p j q i p j q p q i j i j

k i j k i j

f f f f f f

f f f f f f S f

+ + + +

+ + + +

= =

= =

∑∑∑ ∑∑∑

∑∑∑ ∑∑∑

A A

A A A
,

9 9

9



6

So 
, ,

0,0 0,0

p q p q
Sf S f=A A

9 9  and therefore the S and 9
i,j  operators commute.

Theorem 3.2: Given {9
i,j

 f 
k
0,0}= {f 

k
i,j}, a frame sequence of integer rotational translates

of a finite set of q vectors f 
k
0,0, there are vectors g

k
0,0  whose integer rotational translates

{9
i,j

 g
k
0,0} = {g

k
i,j} are a dual frame sequence.

Proof: Since S is bijective, S 
-1 and 9

i,j commute, it follows that

1 1 , , 1 ,

, .k p q k p q k p q k

i jS f S f S f g
− − −= = =9 9 9 ,

This result will be extremely helpful computationally, as it means that by finding the

duals of the prototype elements f 
k, the entire dual frame can be generated through

translates.
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CHAPTER 4.

Numerical Complexity of Dual Frame Evaluation and an Efficient Algorithm

4.1 The Pseudo-Inverse and its Computation

Given an m × n image, the vectors in our space will have mn coefficients, and the matrix

representation of T will be an mn × 2mn matrix, with each row having the coefficients of

a frame member.  Given this mapping from E:¸mnÆ¸2mn
 a mapping E

¸
:¸2mnÆ¸mn

 with

the properties of a dual frame needs to be calculated.  Note that E is not surjective.  Since

it is injective it has an inverse E 
-1

 which can be extended to the mapping E
¸
 by setting

E
¸
(y+z) = E

-1
(y) if y ∈ Range(E) and z ∈ Range(E)

 ⊥
.  E

¸
 is known as the Moore-Penrose

pseudo-inverse.
6
 Calculation of this inverse requires the singular value decomposition of

a matrix, which has complexity O(n
3
).  A more complete description of this calculation is

included in Appendix A.

4.2 Computation of Duals with Compact Support - Dimension Invariance

It will become evident later in this paper that the spaces whose duals must be computed

have a dimension equal to the number of pixels in the digital images.  The majority of

images tested in this paper are a rather small 384 x 512 pixels, for a dimension of

approximately 200,000.  The pseudo-inverse that will need to be computed will therefore

require the inversion of an already 200,000 x 400,000 entry matrix.   The computer
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memory requirements just to store this matrix are about 640 gigabytes.   This would of

course be quite unwieldy, and the time to perform the calculation would be astronomical.

Fortunately this computation can be vastly simplified.  For vectors with compact support,

given a space with large enough dimension, the coefficients of their respective dual

vectors should not vary with the dimension of the space.   This is called dimension

invariance, and a proof follows.

Definition 4.3: Define the minimum covering ball MCB( f ) of  a function f as follows.

Let rB be a closed ball with radius r such that (x,y) ∈ rB  implies f (x,y) = 0 and for which

r ≤ q for all closed balls qB that satisfy the same condition.  Let MCB( f ) = rB  be the

minimum covering ball of f  and let  diam-MCB( f ) = 2r be its diameter.   If a finite r

exists then the function has compact support with supp( f ) ⊆ MCB( f ).

Definition 4.4: Define an M×N-2D space as a space of dimension MN where the

coordinates are indexed as an M×N matrix.

Definition 4.5: Define an extension mapping as a mapping from a vector in an N×M-2D

space to an (N+α)×(M+β)-2D space with α ≥ 1 and β ≥ 1 and where the vector's support

does not span the matrix boundaries.  The mapping takes each coordinate in the N×M
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space to its respective coordinate in the (N+α)×(M+β) space and each new coordinate in

the (N+α)×(M+β) space is set to zero.

Theorem 4.6: Given a frame in a finite N×N-2D space with frame members that are

rotational integer translates of two unique generating vectors, let the sum of the diameters

of the minimum covering balls of each generating vector and its dual be less than N,

diam-MCB(f) + diam-MCB(g) ≤ N.  If the generating vectors are chosen so that their

support does not overlap the boundaries of the matrix then an extension mapping of these

vectors to a larger 2D space will preserve duals.  That is, if the vectors and dual vectors

have compact support in a large enough space then dimension invariance will be

achieved for any larger space.

Proof: Let {9
ij
f 

1
, 9

ij
f 

2
} = {fij 

1
, fij 

2
} i,j ∈{0,…,N-1) be a set of frame vectors in the

N×N-2D space V spanned by this frame with N odd.  Let f 
1 

and f 
2
 be the corresponding

members of  {fij 
1
, fij 

2
} for which MCB(f 

1
) and MCB( f 

2
 ) are centered in the space.

Centered means that each coordinate of the centers of MCB(f 
1
) and MCB(f 

2
) are in the

interval [(N-1)/2-½,(N-1)/2+½], ensuring that the support does not overlap the 2D matrix

boundaries.  Let {9
ij
g

1, 9
ij
g

2} = {g
1

ij , g
2

ij } be the standard dual vectors for the frame

{fij 
1
, fij 

2
} in V, chosen so that MCB(g

1) and MCB(g
2) are also centered.
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Let the vectors f 
1
,  f 

2
,  g

1
,  g

2
 and their translates have compact support with

diam-MCB ( )k
f  + diam-MCB ( )g

A ≤ N
*.

Let f 
1+

 be a vector in a P×Q-2D space V
+
 with N < P,Q,  f 

1+
(x,y) = f 

1
(x,y) for

0 ≤ x,y < N,  f 
1+

(x,y) = 0 for x,y ≥ N and V 
+
 = span{fij 

1+
,  fij 

2+
} i∈{0,…,P-1},

j∈{0,…,Q-1}.  That is 1k
f f

+→ is an extension mapping from V to V
+
.  Define f 

2+
, g

1+

and g
2+

 in the corresponding manner.

The frame decomposition equation gives us the following for all f.

( )
1 1

1 1 2 2

0 0

, ,
N N

i j i j i j i j

i j

f f g f f g f
− −

= =

= +∑∑

Let c = (N-1)/2 and substitute f 
1

cc for f.

( )
1 1

1 1 1 1 1 2 2

0 0

, ,
N N

cc cc i j i j cc i j i j

i j

f f g f f g f
− −

= =

= +∑∑

By the construction of f 
1+

, f 
2+

, g
1+

 and g
2+

( )
1 1

1 1 1 1 1 2 2

0 0

, ,
N N

cc cc i j i j cc i j i j

i j

f f g f f g f
− −

+ + + + + + +

= =

= +∑∑

By the compact support requirement, for N ≤ k <P or N ≤ l < Q

1 1 1 2, , 0
cc k l cc k l

f g f g+ + + += =

This implies that

( )
11

1 1 1 1 1 2 2

0 0

, ,
QP

cc cc i j i j cc i j i j

i j

f f g f f g f
−−

+ + + + + + +

= =

= +∑∑
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By a translation of the coordinates, xÆ x + p and yÆ y + p,

( )
1 1

1 1 1 1 1 2 2

, , , , , ,, ,
P p Q q

c p c q c p c q i p j q i j c p c q i q j q i p j q

i p j q

f f g f f g f
− + − +

+ + + + + + +
+ + + + + + + + + + + +

= =

= +∑ ∑

Then by a change of variables in the summations, iÆi - p and jÆj - q,

( )
11

1 1 1 1 1 2 2

, , ,

0 0

, ,
QP

c p c q c p c q i j i j c p c q i j i j

i j

f f g f f g f
−−

+ + + + + + +
+ + + + + +

= =

= +∑∑

Since
1

,c p c qf
+
+ + =  9

pq
fcc

1+
, the extended duals are the duals of the extended frame members.

This equation is true for all 9
pq

fcc
1+

 and is therefore true for all the translates of f 
1+

.

The same steps work equally well for f 
2+

 so it is true for all frame members, and

therefore by linearity it is true for their span V
+
.   So the frame {fij 

1+
, fij 

2+
} will have

{gij
1+

, gij
2+

} as its standard dual.   This conclusion will hold for a slightly more general

setting as in the following theorem.

Corollary 4.7: Theorem 4.3 holds for {fij 
k} where k ∈{1, 2, …, n}.

Proof: Apply the same steps in 4.3 to
n

k=1 1 1

, .
N N

k k

i j i j

i j

f f g f
= =

= ∑∑∑

                                                                                                                                                                            
*
 Normally the vectors will be centered exactly and < N will be sufficient.
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 Figure 1. Illustration of Theorem 4.3
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CHAPTER 5.

Implementation and Application of Image Combinations of Two different Foci

5.1 Digital Images as Vectors

In this paper, digital black and white images are represented as m×n matrices [ai,j]

0≤ i< m, 0≤ j< n, which can also be viewed as mn-tuples, or vectors of dimension mn.

(a1,1, …, an,1, a2,1, …, a2,n, …, am,1, …, am,n)

In most practical applications, the elements of these matrices are integers

ai,j ∈{0,1,…,255}, however the intermediate computations treat them as reals,

ai,j∈[0,255]. To simplify some calculations, the 2-dimensional image wrapped around

with ai,j = ai+m,j, and ai,j = ai,j+n.  The justification is that where unknown image data that

is outside of the boundary of the image is needed for computations, it is reasonable to use

known data that is part of the image.  The inner product applied to this vector space is the

2-dimensional dot product

, ,

0 0

, .
m n

k l k l

k l

a b a b
= =

= ∑∑

Viewed as mn-tuples, this is the standard dot product.
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5.2 Frame Vectors

The two prototype vectors for the frame are generated as follows

( )
2 2

2

1 1
,

( ) 2 2

0,0

1 1
,

2 2

, 1,2k

m n

i j

k

m n
i j

f i j Ce k
σ

− −
− +

− −
=− =−

 
 = =
  

The x,y indices are over the integers [0, …, m-1] and [0, …, n-1], so there are 2mn

vectors in the frame.   The C constant is a normalizing constant.  Each of these matrixes is

converted to an mn-tuple or row vector.  Using these row vectors, an mn × 2mn

transformation matrix is constructed.  For each pixel either the appropriate "in focus" or

"out of focus vector" is used depending on the value of the mapping function.  When this

transformation matrix operates on the mn column vector representing the image matrix, a

2mn column vector is computed.  Each half of this vector represents an image focused at

one of the two distances. In a real world application this vector contains the two images

obtained by a camera, one focused at the foreground distance and one focused at the

background distance.

This matrix is the S operator which is invertible.  By computing S 
-1

 the original in focus

image may be reconstructed by operating on these vectors. The following figure shows

three-dimensional graphs of a typical vector used in this paper.
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Figure 2. A Gaussian

5.2 Creation of the Testing images

A picture was chosen for use in simulation studies.   A focus map was created using a

GUI program that displayed the image as a background.  The focus map consisted of a

single 0 or 1 for each pixel in the original image indicating whether the corresponding

pixel was to be considered in the foreground or background focus plane.   Two

normalized, digitized n×n Gaussian vectors, f 
1
 and f 

2
 were prepared.  The testing images

were created by projecting the original image onto the frame systems formed by the

rotational translations of these two vectors.  Nineteen trials were performed using

different pairs of vectors.   The first vector was always created with V = .15.   The second

vector was varied in each trial with the Gaussian sigma constant set as V = .15 + .18k,
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with k varying from 1 to 19.   Using a larger value of k caused a flatter Gaussian and the

resulting images were more out of focus.  The conversion of each pixel in the images was

calculated as the dot product of one of the two vectors offset into the original image.

This simulated a digital camera photographing two images at two different focus settings.

The focus map was used to decide which of the vectors the translated vectors f 
1
 or f 

2

were used in the dot product, so it determined which regions of the original image were

in or out of focus.

5.4 Computation Issues

The required computation described so far consists of finding the pseudo-inverse of an

mn × 2mn matrix.   For an image with 384 × 512 pixels, this would involve finding the

pseudo-inverse of an approximately 200,000 × 400,000 matrix, one which has about

80,000,000,000 elements.  The memory requirements just to hold this matrix are about

640 gigabyte, which is beyond the capacity of most modern PC's.  The time to calculate

the pseudo-inverse of this matrix on a modern PC would probably need to be measured in

millennia.

If the frame vectors happens to have compact support, then the dual vectors could be

calculated using a much smaller matrix.  Unfortunately the actual function of a real

camera does not have this property, nor would the duals.  However the tails of both of the

original function, and the dual vectors should decrease exponentially.  Therefore they can
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be expected to act approximately like compactly supported functions if the assumed

support is large enough.   The following two figures show a dual calculated as part of this

investigation.
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Figure 3. A Dual, the Entire Function
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Figure 4. A Close Up View of the Dual
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There are two levels of accuracy of interest with respect to when the vectors approximate

compact support.  One is the numerical accuracy that the IEEE-754 floating-point values

used in all calculations are capable of providing.   The IEEE format has 64 bits allocated

to the mantissa of the value that translates to about 16 decimal places.  The value of each

pixel ranges from 0 to 255, so accuracy's better than 10
-13

 are not expected except by

coincidence.  So what size matrix is needed to obtain this accuracy?

A more practical question is what size matrix is needed to accurately reproduce the

original photograph?  This calculation will only require a accuracy of about 10
-3

assuming that an average error of less than .1, will produce an image that is

indistinguishable from and in most cases identical to the original.   Even less accuracy

may be visually acceptable.

5.5 Computing the Focus Map

When simulating the affect of taking a picture by projection, a determination must be

made for each pixel as to whether it will use the in-focus or out-of-focus frame members.

This was done using a focus map that had a binary value for each pixel indicating

whether the pixel was in or out of focus.   This is provided a priori for this study as part

of the simulation, but in a real world application this would not be the case.   It would

however be possible to generate this map.   One solution for generating the focus map

comes from known image processing algorithms.   To find object edges in the original
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two images, the following procedure can be applied.   The images can be smoothed using

a two dimensional Gaussian, followed by finding the 2
nd

 derivative.   Zero crossings of

the result indicate object edges.  This calculation is simplified by smoothing with the 2
nd

derivative of the Gaussian.
7
 Edges will divide the image into separate regions.

Comparing the regions from each separate image, the values within an out of focus

region will be more uniform than those of an in-focus region.
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CHAPTER 6. Results

6.1 First Test

In an attempt to confirm the theory, a very small image of size 32×32 pixels was used.

The original image is too small to view easily, so that each pixel in the image below has

been enlarged for clarity.

Image 1. Original Cat's Eye

This image was used to generate two partially out of focus images using a very simple

focus map that defocuses all pixels to the right or to the left of the center.   Defocusing

was done by projecting the original image onto a 32×32 dimension space, whose frame

vectors were constructed from a Gaussian.   The σ value of the Gaussian chosen from the

formulae σ = .15 + (.18) k, using an integer k = 1, …, 19.  In this first test I used k=19 or

σ=2.57.
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Image 2. Left in Focus        Image 3. Right in Focus

Note that the reconstructed image below is indistinguishable from the original.

Image 4. Reconstructed Image
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In the test displayed here the values σ= 3.57 (k=19) was used.  The space that the duals

were calculated in had dimension 32×32.   The maximum pixel error in this trial was

0.256, and the average pixel error was 0.074.  The quantized (integer) pixel values for the

reconstructed image were identical to the original image.   This was not surprising and it

confirmed the correctness of the software as well as the use of frame theory.   Next a

more realistic test was run using a more realistically sized image.

6.2 Reconstruction

The 384 × 512 pixel image shown below was chosen for all trials.

Image 5. Original image
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Image 6. Focus Map (Representation)

A program read in this image and also the focus map.   Image 6 is a visual representation

of the focus map used to show which regions of the image were simulated to be in the

foreground and background.  Two different unfocused images were created using this

map, one focused in the foreground and one focused in the background. Dual vectors

were computed in subspaces of each of the 19 trials described in section 5.2.  For each

frame the duals were computed in subspaces ranging from dimension 17×17 through

57×57 in steps of 2.  Computing the duals in small dimension subspace was fast, but in

large dimension it because very time consuming, up to 2 or 3 days.  After computing the

duals a representative pair, g1 and g2, of the dual vectors were identified and saved

separately.  All other duals were translates of these two vectors as shown by theorem 3.1.
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These duals were saved on the computer's disk so that the reconstruction tests could be

repeated without the long computation each time.  The dual vectors were logically zero

filled to match the dimension of the image.  Knowledge of which coordinates were zero

was used to optimize the final step in reconstruction.  Translations of the representative

duals were then used to reconstruct the image from the two unfocused images.  Finally

the reconstructed image data was compared to the original data.  An error value was

calculated for each trial as the average of the absolute value of the differences of the

original and reconstructed pixels.  The reconstruction program was used repeatedly for

each frame-subspace pair. The purpose of all these trial was to find the minimum

subspace for which each frame showed dimension invariant behavior.  This average error

for each trial is listed in table 1 below.
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Image 7. Foreground in focus k=19

Image 8. Background in focus k=19
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Image 9. Reconstructed image using support width 23

6.3 Evaluation of Reconstruction Computations

The following table shows the average error to one decimal place for each combination of

σ (frame pair) and each subspace dimension.  The first thing to notice is the boldface

region of the Table 1 that appears in part 1.  For k less than 7, at some dimension the

values stop decreasing below 10
-12

.    Given the range of values for pixels of 0 to 255,

these values near 10
-12

 are indistinguishable from zero.   This minimum error is the round

off error found with the IEEE-754 floating-point variables used in the calculations.   To

reconstruct the image to better accuracy, higher precision variables would be needed.

This leveling off of the errors indicates where dimension invariance is achieved.  The

second region to notice in Table 1, part 2 is the italicized region that is found in the upper

right hand corner of the table.   These errors represent reconstruction that would be less
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than perfect with respect to the quantized integer values of pixels found in most digital

images.   Even in this region the errors in reconstruction will be hard to notice visually.

This is an important finding for practical reasons.   The 57×57 dual calculation represents

the practical limits of computation with the computer hardware used.   The computation

of duals with this size subspace took 2-3 days and maximum accuracy was not reached

for any σ > 1.08 (k>6).   On the other hand, the 57×57 dual calculation took less than a

minute and would clearly be acceptable for most practical purposes.   The boundaries

between these regions are somewhat arbitrary, however the general shape is clear, and

extrapolation to larger subspaces can be calculated.
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k 1 2 3 4 5 6 7 8 9 10 11 12

Support

n×n
17 5.8E-13 2.0E-09 5.3E-07 1.2E-05 9.4E-05 7.4E-04 2.5E-03 2.2E-03 7.0E-03 2.3E-02 4.6E-02 7.0E-02

19 1.3E-13 2.8E-10 1.4E-07 3.8E-06 5.5E-05 6.4E-05 1.1E-03 2.7E-03 2.4E-03 5.6E-03 1.9E-02 3.8E-02

21 3.9E-13 1.4E-11 4.6E-09 8.7E-07 5.3E-06 9.8E-05 1.6E-04 1.4E-03 2.9E-03 2.5E-03 4.6E-03 1.6E-02

23 1.8E-13 1.4E-12 4.0E-09 1.6E-07 4.1E-06 3.5E-05 1.1E-04 3.6E-04 1.7E-03 3.1E-03 2.7E-03 4.0E-03

25 2.3E-12 6.0E-13 2.7E-10 5.8E-08 1.3E-06 3.0E-06 7.9E-05 9.2E-05 5.9E-04 2.0E-03 3.3E-03 2.9E-03

27 1.7E-12 1.1E-12 9.1E-11 5.8E-09 1.2E-07 4.4E-06 2.3E-05 1.2E-04 9.4E-05 8.5E-04 2.3E-03 3.4E-03

29 2.7E-12 1.7E-12 1.4E-11 3.5E-09 1.4E-07 1.7E-06 3.2E-06 5.9E-05 1.3E-04 1.9E-04 1.1E-03 2.5E-03

31 1.3E-12 7.6E-13 2.0E-12 1.7E-10 2.4E-08 1.7E-07 4.6E-06 1.5E-05 9.8E-05 1.2E-04 3.5E-04 1.4E-03

33 2.8E-12 8.3E-13 1.0E-12 2.0E-10 7.6E-09 1.9E-07 2.1E-06 4.0E-06 4.3E-05 1.3E-04 9.6E-05 5.3E-04

35 3.1E-12 1.3E-12 2.1E-12 1.2E-11 3.7E-09 8.2E-08 3.7E-07 4.8E-06 9.8E-06 7.8E-05 1.4E-04 1.2E-04

37 2.7E-12 2.5E-12 1.8E-12 1.1E-11 2.9E-10 9.5E-09 2.0E-07 2.5E-06 4.7E-06 3.2E-05 1.1E-04 1.3E-04

39 3.1E-12 7.0E-13 2.0E-12 2.4E-12 3.0E-10 8.3E-09 1.5E-07 6.2E-07 5.1E-06 6.7E-06 6.2E-05 1.4E-04

41 3.3E-12 2.1E-12 2.6E-12 2.7E-12 8.4E-11 4.0E-09 4.7E-08 1.7E-07 2.8E-06 5.3E-06 2.4E-05 9.6E-05

43 3.8E-12 3.6E-12 3.0E-12 8.5E-13 1.1E-11 5.3E-10 5.8E-09 2.1E-07 9.0E-07 5.3E-06 5.0E-06 4.9E-05

45 3.7E-12 4.5E-12 3.7E-12 2.1E-12 9.7E-12 3.6E-10 8.6E-09 1.0E-07 1.6E-07 3.1E-06 5.7E-06 1.7E-05

47 4.2E-12 4.4E-12 3.8E-12 2.6E-12 2.7E-12 1.9E-10 4.2E-09 2.6E-08 2.3E-07 1.2E-06 5.4E-06 4.4E-06

49 3.3E-12 7.1E-12 4.8E-12 1.6E-12 3.3E-12 2.9E-11 8.0E-10 7.5E-09 1.6E-07 2.3E-07 3.4E-06 6.1E-06

51 4.4E-12 4.7E-12 3.1E-12 2.1E-12 3.1E-12 1.5E-11 3.6E-10 8.7E-09 6.8E-08 2.3E-07 1.5E-06 5.6E-06

53 6.0E-12 5.4E-12 4.3E-12 2.2E-12 2.1E-12 8.8E-12 2.9E-10 4.4E-09 1.4E-08 3.8E-07 2.1E-07 3.6E-06

55 2.9E-12 3.2E-12 3.2E-12 3.1E-12 2.8E-12 1.8E-12 9.6E-11 1.1E-09 9.1E-09 1.2E-07 2.5E-07 1.7E-06

57 5.8E-12 7.0E-12 5.7E-12 1.7E-12 2.3E-12 1.0E-12 1.1E-11 3.2E-10 8.7E-09 4.3E-08 2.5E-07 5.5E-07

Table 1. Part 1. Error Values for Each Support-k Pair (continued on the next page)
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k 13 14 15 16 17 18 19

Support

n×n

17 9.2E-02 1.1E-01 1.2E-01 1.2E-01 1.2E-01 1.1E-01 1.0E-01

19 6.1E-02 8.2E-02 1.0E-01 1.1E-01 1.2E-01 1.2E-01 1.2E-01

21 3.3E-02 5.3E-02 7.4E-02 9.3E-02 1.1E-01 1.2E-01 1.2E-01

23 1.4E-02 2.8E-02 4.7E-02 6.7E-02 8.6E-02 1.0E-01 1.1E-01

25 3.5E-03 1.2E-02 2.5E-02 4.2E-02 6.0E-02 7.9E-02 9.7E-02

27 3.1E-03 3.2E-03 1.0E-02 2.2E-02 3.7E-02 5.5E-02 7.3E-02

29 3.6E-03 3.2E-03 3.0E-03 8.9E-03 1.9E-02 3.3E-02 5.0E-02

31 2.8E-03 3.7E-03 3.4E-03 2.8E-03 7.8E-03 1.7E-02 3.0E-02

33 1.6E-03 3.0E-03 3.8E-03 3.5E-03 2.8E-03 7.0E-03 1.6E-02

35 7.3E-04 1.9E-03 3.1E-03 3.9E-03 3.6E-03 2.8E-03 6.2E-03

37 2.2E-04 9.4E-04 2.1E-03 3.3E-03 4.0E-03 3.7E-03 2.9E-03

39 1.1E-04 3.5E-04 1.2E-03 2.3E-03 3.5E-03 4.1E-03 3.8E-03

41 1.5E-04 1.1E-04 5.0E-04 1.4E-03 2.5E-03 3.6E-03 4.2E-03

43 1.3E-04 1.5E-04 1.5E-04 6.7E-04 1.6E-03 2.7E-03 3.8E-03

45 7.9E-05 1.5E-04 1.3E-04 2.3E-04 8.4E-04 1.8E-03 2.9E-03

47 3.9E-05 1.1E-04 1.6E-04 1.2E-04 3.5E-04 1.0E-03 2.0E-03

49 1.3E-05 6.6E-05 1.4E-04 1.6E-04 1.2E-04 4.8E-04 1.2E-03

51 4.4E-06 3.1E-05

53 6.4E-06

55

57 3.8E-06 6.5E-06 7.6E-06 4.4E-05 1.1E-04 1.7E-04 1.6E-04

Table 1. Part 2. Error Values for Each Support-k Pair (continued from the previous page)

Table 2 below shows an approximate but meaningful lower estimate for the dimension

where dimension invariance is achieved.  These values are taken from the wandering line

that borders the top of the boldface region of Table 1 part 1.  The values show the total

support needed but they do not show what the individual supports are for the original

vector and its dual.
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σ Index Sigma Support

n×n

1 0.33 11 *

2 0.51 23

3 0.69 31

4 0.87 39

5 1.05 47

6 1.23 55

7 1.41 63 *

8 1.59 71 *

9 1.77 79 *

10 1.95 87 *

11 2.13 95 *

12 2.31 103 *

13 2.49 111 *

14 2.67 119 *

15 2.80 127 *

16 3.03 135 *

17 3.21 143 *

18 3.39 151 *

19 3.57 159 *

* Estimated

Table 2. Support Values Determined from Table 1

To estimate the separate individual original vector/dual vector supports, the following

two tables were constructed.  The table entries show the absolute value of the maximum

coefficient found in each vector outside of the area of support.  Table 3 is for the original

vectors and table 4 is for the dual vectors.   Once the tables were constructed, values

where the magnitude of the two vectors were about equal were chosen such that the total

support was equal to or greater than the support required by table 2.  This magnitude is

illustrated in the following two tables by the wandering line passing through the tables.
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k 1 2 3 4 5 6 7 8

Support

n×n

0 9.6E-01 6.0E-01 3.3E-01 2.1E-01 1.4E-01 1.1E-01 8.0E-02 6.3E-02

2 9.7E-03 8.7E-02 1.2E-01 1.1E-01 9.2E-02 7.6E-02 6.2E-02 5.2E-02

4 1.0E-08 2.7E-04 5.0E-03 1.5E-02 2.4E-02 2.8E-02 2.9E-02 2.9E-02

6 1.1E-18 1.8E-08 2.6E-05 5.5E-04 2.4E-03 5.4E-03 8.3E-03 1.1E-02

8 1.2E-32 2.6E-14 1.7E-08 5.4E-06 1.0E-04 5.3E-04 1.4E-03 2.7E-03

10 1.4E-50 8.0E-22 1.3E-12 1.4E-08 1.7E-06 2.7E-05 1.5E-04 4.5E-04

12 1.6E-72 5.3E-31 1.3E-17 9.9E-12 1.2E-08 7.2E-07 9.4E-06 5.1E-05

14 1.9E-98 7.4E-42 1.5E-23 1.8E-15 3.2E-11 9.8E-09 3.6E-07 3.9E-06

16 2.3E-128 2.2E-54 2.2E-30 9.2E-20 3.6E-14 6.9E-11 8.2E-09 2.0E-07

18 2.9E-162 1.4E-68 3.8E-38 1.2E-24 1.6E-17 2.5E-13 1.1E-10 6.9E-09

20 3.8E-200 2.0E-84 8.2E-47 4.3E-30 2.9E-21 4.7E-16 9.6E-13 1.6E-10

22 5.1E-242 5.7E-102 2.2E-56 4.1E-36 2.1E-25 4.5E-19 4.9E-15 2.6E-12

24 7.0E-288 3.6E-121 7.0E-67 1.0E-42 6.3E-30 2.3E-22 1.5E-17 2.7E-14

26 0 4.8E-142 2.8E-78 6.9E-50 7.5E-35 5.8E-26 2.8E-20 1.9E-16

28 1.4E-164 1.4E-90 1.2E-57 3.6E-40 7.8E-30 3.1E-23 9.2E-19

30 8.6E-189 8.0E-104 5.9E-66 7.0E-46 5.3E-34 2.1E-26 3.0E-21

32 1.1E-214 5.8E-118 7.6E-75 5.5E-52 1.9E-38 8.8E-30 6.5E-24

34 3.2E-242 5.2E-133 2.6E-84 1.7E-58 3.5E-43 2.2E-33 9.5E-27

36 1.9E-271 5.6E-149 2.4E-94 2.2E-65 3.3E-48 3.3E-37 9.3E-30

38 2.5E-302 7.5E-166 5.7E-105 1.1E-72 1.6E-53 3.0E-41 6.2E-33

40 0 1.2E-183 3.7E-116 2.4E-80 4.1E-59 1.6E-45 2.8E-36

42 2.4E-202 6.4E-128 2.0E-88 5.3E-65 5.4E-50 8.3E-40

44 5.9E-222 2.9E-140 6.8E-97 3.6E-71 1.1E-54 1.7E-43

46 1.8E-242 3.6E-153 9.3E-106 1.2E-77 1.3E-59 2.3E-47

48 6.5E-264 1.2E-166 5.1E-115 2.2E-84 9.8E-65 2.1E-51

50 2.9E-286 1.0E-180 1.2E-124 2.1E-91 4.4E-70 1.3E-55

52 0 2.4E-195 1.0E-134 9.9E-99 1.2E-75 5.4E-60

54 1.5E-210 3.8E-145 2.5E-106 1.9E-81 1.5E-64

56 2.5E-226 5.5E-156 3.1E-114 1.9E-87 2.9E-69

58 0 0 0 0 0

Table 3. Maximum Error Outside of Support for Original Vector
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k 1 2 3 4 5 6 7 8

Support

n×n

0 5.2E-01 7.4E-01 8.8E-01 9.3E-01 9.5E-01 9.6E-01 9.7E-01 9.8E-01

2 5.1E-03 5.4E-02 6.1E-02 4.9E-02 3.8E-02 3.0E-02 2.4E-02 1.9E-02

4 2.4E-05 1.9E-04 6.5E-03 1.3E-02 1.6E-02 1.6E-02 1.5E-02 1.4E-02

6 2.0E-08 2.7E-04 1.2E-03 3.7E-05 2.8E-03 5.2E-03 6.6E-03 7.2E-03

8 1.4E-09 2.3E-05 4.6E-05 5.7E-04 4.8E-04 4.5E-04 1.6E-03 2.7E-03

10 1.2E-11 4.4E-07 2.9E-05 3.3E-05 3.1E-04 4.0E-04 9.6E-05 4.6E-04

12 5.2E-14 9.6E-08 1.1E-06 2.4E-05 2.7E-05 1.9E-04 2.9E-04 2.0E-04

14 1.7E-16 1.2E-08 5.8E-07 2.9E-06 1.9E-05 2.2E-05 1.3E-04 2.1E-04

16 4.2E-17 4.8E-10 6.9E-08 1.0E-06 6.1E-06 1.4E-05 1.8E-05 8.8E-05

18 1.0E-16 3.0E-11 8.7E-09 2.0E-07 2.7E-07 7.5E-06 1.0E-05 1.5E-05

20 8.0E-17 6.2E-12 2.4E-09 4.0E-08 5.6E-07 1.1E-06 7.7E-06 7.1E-06

22 8.2E-17 3.9E-13 3.5E-11 1.3E-08 9.6E-08 5.1E-07 2.3E-06 7.2E-06

24 7.3E-17 4.0E-15 6.1E-11 1.3E-09 2.6E-08 3.1E-07 7.0E-08 3.1E-06

26 7.7E-17 3.2E-15 3.8E-12 7.2E-10 1.4E-08 5.2E-08 3.8E-07 5.2E-07

28 6.4E-18 2.2E-16 1.3E-12 2.4E-11 7.3E-10 1.8E-08 1.8E-07 2.7E-07

30 2.1E-17 2.0E-16 1.9E-13 3.9E-11 1.0E-09 1.3E-08 3.0E-08 2.6E-07

32 4.1E-17 2.5E-17 1.7E-14 1.1E-12 2.8E-10 2.5E-09 1.4E-08 1.1E-07

34 7.9E-17 3.9E-16 6.4E-15 2.0E-12 2.7E-11 6.7E-10 1.2E-08 1.9E-08

36 4.8E-17 1.3E-16 2.9E-16 1.8E-13 3.0E-11 5.6E-10 3.7E-09 1.0E-08

38 1.7E-16 6.4E-17 1.5E-16 9.6E-14 4.3E-12 1.2E-10 1.9E-12 1.0E-08

40 6.8E-17 6.0E-19 5.8E-17 1.5E-14 1.7E-12 2.4E-11 5.9E-10 4.3E-09

42 1.1E-16 6.8E-17 1.4E-16 4.1E-15 7.5E-13 2.4E-11 3.0E-10 6.9E-10

44 4.3E-17 2.7E-17 2.8E-16 9.2E-16 1.2E-14 5.9E-12 5.6E-11 4.1E-10

46 1.0E-16 1.7E-17 9.1E-17 1.0E-16 6.3E-14 7.9E-13 2.0E-11 3.9E-10

48 7.1E-17 1.0E-16 5.7E-17 3.3E-16 1.5E-14 1.0E-12 1.9E-11 1.7E-10

50 6.4E-17 1.1E-16 3.8E-16 6.7E-17 2.3E-15 2.8E-13 6.5E-12 2.7E-11

52 2.2E-16 1.3E-17 3.1E-16 3.3E-17 1.8E-15 2.3E-14 2.3E-13 1.6E-11

54 1.5E-16 1.1E-16 7.0E-17 1.5E-16 4.6E-17 4.2E-14 9.3E-13 1.5E-11

Table 4. Maximum Error Outside of Support for Dual Vector



33

The values at the wandering lines are summarized below in table 5.  The total column is

taken from table 2, and represents the total support needed for perfect reconstruction to

the accuracy of the variables used, or in other words, the support needed to achieve

dimension invariance, or each frame (k value) tested.

Frame Vector Dual Vector Total

k

1 5 7 12

2 7 17 24

3 9 25 34

4 13 29 42

5 15 37 52

6 17 41 58

7 19 49 68

8 21 57 78

Table 5. n×n Support Needed for Perfect Reconstruction
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 CHAPTER 7. Conclusions and Future Study

7.1 Conclusions

Image representation and reconstruction using 2D frames of translates are studied in this

thesis.   An application of the study is in image reconstruction from two or more images

of different foci.  A major issue of the study is that while the numerical complexity of

calculation is almost intractable, the use the dimension invariance of compactly supported

frame members makes the calculation possible in such frame systems.   The study finds

that frame systems with members that approximate compact support are also subject to

this treatment.

7.2 Application

Before a practical application of this theory is possible, there are a number of areas that

will need further research.  Few images consist of objects at exactly two focus distances.

This paper can be extended to more than two sets of frame vectors.   Even with the use of

a smaller dimension space for calculating pseudo-inverses, some of the calculations take

an impracticably long time.  This problem may be surmounted by pre-computing the

duals for fixed σ values and possibly interpolating for intermediate values.  There are

also engineering and design obstacles to producing multiple images that are properly

aligned, and to determining the actual frame vectors.
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APPENDIX A, Calculation of the Pseudo-Inverse

Because the frames used in this paper are finite dimensional, the standard dual frame can

be found by computing the Moore-Penrose pseudo-inverse.    The pseudo-inverse of a

matrix A can be calculated using the singular decomposition.  Given that A = UΣV
T
,

where U and V are square matrices, and Σ is a diagonal matrix whose diagonal values are

the singular values of A, the pseudo-inverse may be calculated as A¹
 = VΣ-1

U
T
.
8

Once the V
T
, Σ, and U are known, it is trivial to find V, Σ-1 

and U
T
, and therefore A

¹
.

A strategy for finding the singular values of A requires computing the positive square

roots of the eigen-values of A*A and AA*.
9
 Many methods exist for estimating eigen-

values exist, see for example Fundamentals of Matrix Computations, 2
nd

 Edition, David

Watkins, Wiley Inter-Science, Chapters 5 and 6.

The singular value decomposition calculation was performed using a software package

called newmat11 available at http://www.robertnz.net/nm11x.htm.  This is a general

purpose C++ matrix handling software package. The single value decomposition routine

has the following comment with respect to its algorithm, "from Wilkinson and Reinsch:

Handbook of Automatic Computation."
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APPENDIX B, Software Description

All software used in this project was written by the author, except as noted.   This

software is available for inspection at ftp://www.schoenbrun.com/pub/msthesis.tar.gz.

The software was written using the C and C++ languages and compiled using the 2.95.3

version of the GNU compiler.   The operating system used was QNX 6.3.0, which is a

Unix like Posix conforming operating system, however no operating system specific

features were used in the calculations.  The hardware used was a Superserver brand

computer model 8042, using 4, 1.5Ghz Intel Pentium IV Xeon processors.   None of the

software used multiple processors simultaneously.  Their availability did help to speed

processing during some of the longer tests by allowing multiple simultaneous trials.

For this investigation black and white digital images of dimension 512 x 384 were used.

Each pixel is represented by an integer [0..255] where 0 represents pure black, and 255

represents pure white.   Color images are typically represented using three RGB (red,

green, blue) integers so that the results may be extended by applying the computations to

each color channel separately.  Each pixel is considered a coordinate in an m x n vector.

For computations, the coordinates were represented by an IEEE-754 double precision

floating point value.  This representation consists of:
10

Field Binary Bits

Sign 1 [0=+, 1=-]

Exponent 11 [-1023,1024]

Mantissa 52 [0,1], approximately 16 decimal digits
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The main software modules consist of four C++ classes known respectively as gaussian,

image, pinverse, and sequence.  C++ classes are prototypes of objects that consist of both

data and programming code.   The data and code are hidden within the object except

through its public view.  This gives an object the properties of a black box.   The user of

the object knows only what the object does, but not how it does it.

Gaussian:  This class creates a single 2-dimensional prototype vector of specific width

and sigma value. The creation code automatically normalizes the data.  Sigma values

were specified using an index [0..19] which is translated into a real value using the

formula .15 + .18 * Index.   Internally the data for this vector is stored as a matrix of

values, each of type "double".  Two objects were created from this class for calculations.

The width is always an odd integer so that the center of the function is located at the

center of a pixel.

Image: This class was used to hide the details of the .BMP disk image file format.  The

class was used to read images, provide access to their pixel data, and to save new or

modified images. While the image format only supports pixels with integer values from 0

to 255, this class stored and calculated all intermediate data using a floating point type

"double".  This class also contained the code for creating the foreground and background

focused image versions.
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Pinverse:  This class was used to calculate the pseudo-inverses given two Gaussian

objects.  The process of calculating the inverse was the most time consuming part of the

calculation, at times taking 2 or 3 days.   To keep from having to repeat any such

calculations, this class automatically stored results in a disk file, and avoided

recalculation when a disk version was found.   This class also contained the

reconstruction code used when the inverse matrix was calculated at full size.  The routine

that computes single value decomposition for determining the pseudo-inverse is part of

the package newmat11 described in Appendix A.

Sequence:  Since the frames used in this project consisted of two prototype vectors, it was

only necessary to store a pair of dual vectors.   This pair was called a sequence.  This

class requires the pinverse class for computing these sequences, and then stores them in a

disk file.  This class also contains the reconstruction code for use when the duals are

calculated with a matrix smaller than the original image.
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Figure 5. Software Flowchart
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These modules were used in a program called reconstruct, which performed the following

steps.

1) Create the needed Gaussians.

2) Create the foreground and background images.

3) Create the needed pseudo-inverse

4) Reconstruct the original image

5) Calculate errors between the original and reconstructed images

The average error was calculated as follows

0 0

( , ) ( , )
m n

o r

i j

ae P i j P i j mn
= =

= −∑∑

where Po is the original image data, and Pr is the reconstructed data.

A GUI utility program called mapper was used to manually generate the focus map.  This

program allowed the user to choose pixels using the original image as a background

guide.   The GUI used by this software is native to the QNX operating system, and so

unfortunately cannot be easily ported to other systems.
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APPENDIX C, Optical Description

A photographic camera consists of an optical system, and an image detector, commonly

film, or in the case of a digital camera, a charge coupled device (CCD).   In an ideal

camera, image capture is a linear projection from objects in the three dimensional real

world space onto the image detector.   In reality, there are a number of distortions that

take place.   The main distortion is that of focus.   A lens works by bending the light path

of the original image.  This bending is due to the difference of index of refraction of the

two media, air and glass or plastic that the light passes through.

Figure 6. In Focus Image

If different light paths from the same point in the original image do not intersect in the

same location on the image detector, so the image will appear out of focus.

Figure 7. Out of Focus Image

Focus is also affected by the size of the lens opening, referred to as the f-stop.  A smaller

opening or f-stop will create an image that is more in focus.  In photographic terminology

this is referred to as a greater depth of field.
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Figure 8. Reduced f-stop

It is not possible for all parts of the original image at different distances from the lens to

all be in focus, although this can be mitigated by using large f-stops.

For this paper the defocusing of an image is simulated by a 2-dimensional Gaussian

function.   This function has the features of being radially symmetric, and center

weighted with an exponential drop off of distance from the center.  This of course is not

an exact function for lenses in general, but it served as an adequate tool for the

investigation.  For a practical application, the transformation function of a lens would

have to be accurately measured.   The techniques for doing this are beyond the scope of

this paper.  It is also assumed that all the objects in the original image are at exactly two

different distances, dI the in-focus distance, and dO the out of focus distance. The

projection of the original image onto the detector is a function h:XÆY where X is the 3

dimensional real world space and Y is the 2 dimensional image detector space.  Since all

of the objects in the original space are located at only two different z distances from the

lens, the function can be rewritten as follows, reducing the problem to one of 2

dimensions:

h(x,y,z) = mI(x,y)hI(x,y) + mO(x,y)hO(x,y)
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where hI is an in-focus transformation, hO is an out-of-focus transformation, and where

mI and mO are the mapping functions

I I

I O

O O

1 if z= 0 if z=

0 if z= 1 if z=

d d
m m

d d

 
= = 

 

This can further be refined by noting that mO(x,y)= 1 - mI(x,y). Also note that hI should

be very close to a simple dilation and a rotation.  By using the appropriately transformed

coordinates, hI becomes an approximation of the mathematical identity.

For simplicity an existing digital image is used as a surrogate for the real world space,

with an artificially generated mapping function.  The transformations with the following

convolution

2 2

2

(( ) ( ) )

( ) ( , ) ( , ) ( , )

x y

X X
R G R G x y d d C R e d d

τ υ

σ
σσ τ υ τ υ τ υ τ υ τ υ

− − + −

∗ = − − =∫∫ ∫∫

where R(x,y) is the function associated with the real world image, and C a normalizing

constant such that

2 2

2

( )

 1
X

C e d d

τ υ

σ τ υ
− +

=∫∫

with σI and σO constants that determine the degree to which a transformation defocuses

the original image.
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The values of σ are limited to σk = .15 + .18k where k=[0..19].  This provides a spread of

h functions from a near perfect focus to significantly out of focus. To model real digital

photos, the R function is represented by an m×n matrix,

[Rx,y] and hI and hO become

    ( ) ( )
2 22 2

22

(( ) ( ) )(( ) ( ) )

, ,

, ,

, , , OI

m x n ym x n y

I I x y O O x y

x y x y

h x y C R e h x y C R e
σσ

− − + −− − + −

= =∑ ∑

with the sums over integers [0,…,m-1] and [0,…,n-1].  There is one more important,

although somewhat unrealistic simplification in this model.

Figure 9. Multiple Foci

In the upper image is an in-focus function hI mapped to the letter A, and an out of focus

function hO mapped to the letter B.  In the lower image is the opposite, an in focus

function h I' mapped to the letter B, and an out of focus function hO' mapped to A.
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It should be clear that hI  = hI' since they are both close to identities, however in general

hO  ≠ hO'.   If the distance from the letters to the lens is large compared to their relative

distances hO ≈ hO'. The simplification hO = hO' is used so that the frame will be made of

two sets of vectors instead of four.  While this is a reasonable simplification for this

paper, it may not be valid for practical applications that will need all four functions.
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APPENDIX D, A Real World Test

During the course of this project a real world example was tried.   A scene with

foreground and background objects was set up and two photographs were taken, one

focused in the foreground and a second focused in the background.  A focus map was

calculated using a very simple algorithm.   The idea behind this algorithm is that if an out

of focus pixel is re-projected using an out of focus frame member, its value should not

change, however if it is an in focus pixel it will. The images were reconstructed using the

same program as in the thesis tests.   The results suffer from a number of real world

problems that were not addressed in this paper, however the results are visually

interesting.

Image 10. Real world image, background focus
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Image 11. Real world image, foreground focus

Image 12. Real world image, reconstructed
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