Answer Key 2

Page 102: Page 125: 35-38, 47, 48, 51, 53, 55, 56, 75
For 3-9, just find the limit.
12-34, 37.
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Most of these require you to multiply an A+B factor by A-B or the reverse.

12.5 13.6

14. -3 15. DNE
16. DNE 17.5/7
18. 11/10 19. 9/2
20. 1/3 21. -6
22.6 23.1/6
24. -4 25.-1/9
26. DNE 27.1
28.1 29. 1/128
30.0 31.-1/2
32.-4/5 33. 2x? this is the derivative of x3
34. —2x73 this is the derivative of x2

37. Note that

—1 < cos(20mx) < 1 50 we have —x? < cos(20mx) < x?

Also note that lim —x? = 0 and limx? = 0
x-0 x—-0

So, by the squeeze theorem lin(} x%cos(20mx) =
X—

Page 125
35.4 36.0
37. In(x) 38.9
47. We can form an equation here 48.
dc+4=8-2c First note that lim *-—* = 4
So we get ¢ = 2/3 x—2 X=

Now we can get two equations in two
unknowns

4a—-2b+3 =4
9a—-3b+3=6—-—a+b

Solving these we get a = 21 and b = %

51. a)
this function can be written
x-Dx+1D%2+1)
- - -x - 1
So, the discontinuity at 1 can be removed.
A function that agrees but is continuous at
lis
fe) =(x+1)*+1)

51. b)
this function can be written
x(x+1)(x—2)
X — 2
So, the discontinuity at 2 can be removed.
A function that agrees but is continuous at
21s

f(x)=x(x+1)

51.c)
The discontinuity at = is a jump
discontinuity and cannot be removed.




53.
The function is continuous.

Also £(0) = 0 and 10000 < £(100) < 10010

So, by the intermediate value theorem there exists a number c,
0 < ¢ <100 such that f (c)=1000.

55.

Iff(x) =—x*+4x+1
then f(—=1) = -2

and f(0) =1

Since -2 < 0 < 1 by the intermediate value theorem there exists a number c on the
interval (-1,0) such that f(c) = 0

56.
Since In(x) = x — +/x we can form the function f(x) = In(x) — x +Vx

then f(2) = ~.107
and f(3) = ~—.159

Since -.159 < 0 <.107 by the intermediate value theorem there exists a number ¢ on the
interval (-1,0) such that f(c) = 0, which is a solution to our equation.

75.

Use an altitude scale such that the bottom of the mountain is at height=0 and the top is
at height =1.

Let H(t) be the monk’s height on the first day at time t while ascending.

Let G(t) be his height on the second day at time t while descending.

Let D(t) = G(t)-H(t)

Since H and G are continuous functions, D will be continuous.

At the start of the second day we have D(7TAM) = 1.
At the end of the second day we have D(7PM) = -1.

So, by the intermediate value theorem there is a time t 7AM<t<7PM such that D(t) = 0.
Clearly with D(t)=0 H(t)=G(t).




